
build great
products™

2013 © Jama Software, Inc www.jamasoftware.com | 1.800.679.3058

PROJECT
MANAGEMENT BEST
PRACTICES

Requirements expert Karl Wiegers introduces 21 valuable practices that can help
both rookie and veteran project managers do a better job with less pain.

anaging software projects is difficult
under the best circumstances. The
project manager must balance competing
stakeholder interests against the

constraints of limited resources and time, ever-
changing technologies and challenging demands
from high-pressure people. Project management is
a juggling act, with too many balls in the air at once.

Unfortunately, many new project managers receive
little training in how to do the job. Anyone can

learn to draw a Gantt chart, but effective project
managers also rely on the savvy that comes from
experience. Learning survival tips from people
who’ve already done their tours of duty in the
project management trenches can save you from
learning such lessons the hard way.

This white paper, adapted from the book Practical
Project Initiation: A Handbook with Tools
(Microsoft Press, 2007), by requirements expert
Karl Wiegers, is organized into five categories:

LAY THE
FOUNDATION

PLAN THE
PROJECT

ESTIMATE
THE WORK

TRACK YOUR
PROGRESS

LEARN FOR
THE FUTURE

2Karl Wiegers
“Project Management Best Practices” www.jamasoftware.com | 1.800.679.3058

priorities for success, team members can work at
cross-purposes1.

Identify project drivers,
constraints and degrees
of freedom.

Every project must balance its functionality,
staffing, budget, schedule and quality objectives.
Define each of these five project dimensions as
either a constraint within which you must operate,
a driver strongly aligned with project success or
a degree of freedom you can adjust within some
stated bounds2.

Bad news: not all factors can be constraints and
not all can be drivers. If you are given a defined
feature set that must delivered with zero defects
by a specific date by a fixed team size working on
a fixed budget, you will most likely fail. An over-
constrained project leaves the project manager
with no way to deal with requirement changes,
staff turnover or illness, risks that materialize or
any other unexpected occurrences.

Scenario: a senior manager and a project leader
debate how long it would take to deliver a planned
new large software system. The project leader’s
top-of-the-head guess was four times as long as the
senior manager’s stated goal of six months. The
project leader’s response to the senior manager’s
pressure for the much shorter schedule was
simply, “Okay.” A better response would have been
to negotiate a realistic outcome through
a dialogue:

• Does something drastic happen if we
don’t deliver in six months (schedule is a
constraint), or is that just a desirable target
date (schedule is a driver)?

• If the six months is a firm constraint, what
subset of the requested functionality do you
absolutely need delivered by then? (Features
are a degree of freedom.)

• Can I get more people to work on it? (Staff is a
degree of freedom.)

• Do you care how well it works? (Quality is a
degree of freedom.)

• Can I get more funding to outsource part of
the project work? (Cost is a degree
of freedom.)

hen initiating a new project, study
this list of practices to see which ones
would be valuable contributors to
that project. Build the corresponding

activities into your thinking and plans. Recognize,
though, none of these practices will be silver
bullets for your project management problems.
Also, remember that even “best” practices are
situational. They need to be selectively and
thoughtfully applied only where they will add value
to the project.

LAYING THE
FOUNDATION

Define project success criteria.

At the beginning of the project, make sure the
stakeholders share a common understanding
of how they’ll determine whether this project is
successful. Begin by identifying your stakeholders
and their interests and expectations. Next, define
some clear and measurable business goals. Some
examples are:

• Increasing market share by a certain amount
by a particular date

• Reaching a specified sales volume or revenue

• Achieving certain customer satisfaction
measures

• Saving money by retiring a high-maintenance
legacy system

These business goals should imply specific project
success criteria, which again should be measurable
and trackable. These goals could include achieving
schedule and budget targets, delivering committed
functionality that satisfies acceptance tests,
complying with industry standards or government
regulations or achieving specific technology
milestones. The business objectives define the
overarching goal. It doesn’t matter if you deliver to
the specification on schedule and budget if those
factors don’t clearly align with business success.

Not all of these defined success criteria can be your
top priority. You’ll have to make some thoughtful
trade-off decisions to be sure that you satisfy your
most important priorities. If you don’t define clear

1

2

3Karl Wiegers
“Project Management Best Practices” www.jamasoftware.com | 1.800.679.3058

Define product release criteria.

Early in the project, decide what criteria will
indicate whether the product is ready for release.
Some examples of possible release criteria are:

• There are no open high-priority defects.

• The number of open defects has decreased for
X weeks and the estimated number of residual
defects is acceptable.

• Performance goals are achieved on all
target platforms.

• Specific required functionality is
fully operational.

• Quantitative reliability goals are satisfied.

• Specified legal, contractual, or regulatory goals
are met.

• Customer acceptance criteria are satisfied.

Whatever criteria you choose should be realistic,
objectively measurable, documented and aligned
with what “quality” means to your customers.
Decide early on how you will tell when you’re
done, track progress toward your goals and stick
to your guns if confronted with pressure to ship
before the product is ready for prime time3.

Negotiate achievable commitments.

Despite pressure to promise the impossible, never
make a commitment you know you can’t keep.
Engage in good-faith negotiations with customers,
managers and team members to agree on goals
that are realistically achievable. Negotiation
is required whenever there’s a gap between
the schedule or functionality the key project
stakeholders demand and your best prediction of
the future as embodied in project estimates.

Principled negotiation involves four precepts,
as described in Getting to Yes by Roger Fisher,
William Ury and Bruce Patton (Penguin USA, 1991):

• Separate the people from the problem.

• Focus on interests, not positions

3

4

• Invent options for mutual gain.

• Insist on using objective criteria.

Any data you have from previous projects will
strengthen your negotiating position, especially
because the person with whom you’re negotiating
likely has no data at all. However, there’s no real
defense against truly unreasonable people.
Plan to renegotiate commitments when project
realities (such as staff, budget or deadlines)
change, unanticipated problems arise, risks
materialize or new requirements are added.
No one likes to have to modify his or her
commitments. But if the reality is that the initial
commitments won’t be achieved, let’s not pretend
that they will right up until the moment of
disappointing truth.

PLANNING THE PROJECT

Write a plan.

Some people believe the time spent writing a
plan could be better spent writing code, but I
don’t agree. The hard part isn’t writing the plan.
The hard part is doing the planning—thinking,
negotiating, balancing, asking, listening and
thinking some more. Actually writing the plan
is mostly transcription at that point. The time
you spend analyzing what it will take to solve the
problem will reduce the number of surprises you
encounter later in the project. A useful plan is
much more than just a schedule or task list.
It also includes:

• Staff, budget and other resource estimates
and plans

• Team roles and responsibilities

• How you will acquire and train the
necessary staff

• Assumptions, dependencies and risks

• Target dates for major deliverables

• Identification of the software development life
cycle that the project will follow

• How you will track and monitor the project

5

4Karl Wiegers
“Project Management Best Practices” www.jamasoftware.com | 1.800.679.3058

• Metrics that you’ll collect and analyze

• How you will manage any
subcontractor relationships

Your organization should adopt a standard
software project management plan template,
which each project can tailor to best suit its needs.
You might start with the project management plan
template available at www.ProjectInitiation.com.
Adjust and shrink this template to suit the nature
and size of your own projects.

If you commonly tackle different kinds of projects,
such as major new product development projects
as well as small enhancements, adopt a separate
project plan template for each project class. The
project plan should be no longer or more elaborate
than necessary to make sure you can successfully
execute the project. One page might suffice in
some cases. But always write a plan.

Decompose tasks to
inch-pebble granularity.

Inch-pebbles are miniature milestones (get it?).
Breaking large tasks into multiple small tasks
helps you estimate them more accurately, reveals
work activities you might not have thought of
otherwise and permits more accurate, fine-grained
status tracking. Select inch-pebbles of a size that
you feel you can estimate accurately. Inch-pebbles
that represent tasks of about 5 to 15 labor-hours
is a good start. Overlooked tasks are a common
contributor to schedule slips. Breaking large
problems into smaller bits reveals more details
about the work that must be done and improves
your ability to create accurate estimates. You
can track progress based on the number of inch-
pebbles that the team has completed at any given
time, compared with those you planned to have
done by that time.

Develop planning worksheets for
common large tasks.

If your team frequently undertakes certain
common tasks—implementing a new class,
executing a system test cycle or performing a
product build—develop activity checklists and
planning worksheets for these tasks. Each checklist
should include all of the steps the large task might
need. These checklists and worksheets will help

6

7

each team member identify and estimate the effort
associated with each instance of the large task he
must tackle. People work in different ways, and no
single person will think of all the necessary tasks,
so engage multiple team members in developing
the worksheets. Tailor the worksheets to meet the
specific needs of individual projects. They help
avoid overlooking an important step in my rush to
finish the project.

Plan to do rework after a quality
control activity.

Some project plans assume every test will be
a success that lets you move on to the next
development activity. However, almost all quality
control activities, such as testing and peer reviews,
find defects or other improvement opportunities.
Your project schedule should include rework as
a discrete task after every quality control task.
Base your estimates of rework time on previous
experience. If you collect a bit of data, you can
calculate the average expected rework effort to
correct defects found in various types of work
products. And if you don’t have to do any rework
after performing a test, great; you’re ahead of
schedule on that task. This is permitted in all fifty
states and in many other countries. Don’t count on
it, though.

Manage project risks.

If you don’t identify and control project risks,
they’ll control you. A risk is a potential problem
that could affect the success of your project. It’s a
problem that hasn’t happened yet—and you’d like
to keep it that way. Simply identifying the possible
risk factors isn’t enough. You also have to evaluate
the relative threat each one poses so you can focus
your energy where it will do the most good.

Risk exposure is a combination of the probability
that a specific risk could materialize into a problem
and the negative consequences for the project if

8

9

If you don’t identify and control
project risks, they’ll control you. A
risk is a potential problem that could
affect the success of your project.

5Karl Wiegers
“Project Management Best Practices” www.jamasoftware.com | 1.800.679.3058

when you first try to apply new processes, tools, or
technologies. Don’t expect to get fabulous benefits
on the first try, no matter what the tool vendor or
the consultant claims. Make sure your managers
and customers understand the learning curve as an
inescapable consequence of working in a rapidly
changing, high-tech field.

ESTIMATING THE WORK

Estimate based on effort, not
calendar time.

People generally provide estimates in units of
calendar time. It’s preferable to estimate the effort
(in labor-hours) associated with a task and then
translate the effort into a calendar-time estimate.
A 20-hour task might take 2.5 calendar days of
nominal full-time effort, or two exhausting days.
However, it could also take a week if you have to
wait for critical information from a customer or
stay home with a sick child for two days. Translate
effort into calendar time on estimates of how many
effective hours one can spend on project tasks
per day, any interruptions or emergency bug fix
requests, meetings and all the other places into
which time disappears.

If you track how you actually spend your time
at work, you’ll know how many effective weekly
project hours you have available on average.
Tracking time like this is illuminating. Typically,
the effective project time is only perhaps 50 to 60
percent of the nominal time team members spend
at work, far less than the assumed 100 percent
effective time on which so many project schedules
are planned.

Don’t over-schedule
multitasking people.

The task-switching overhead associated with the
many activities we are all asked to do reduces our
effectiveness significantly. Excessive multitasking
introduces communication and thought-process
inefficiencies that reduce individual productivity.
One manager claimed that someone on his team
had spent an average of eight hours per week on
a particular activity, so therefore she could do five
of them at once. Forty hours per week divided by
eight is five, right? In reality, she’ll be lucky if she

it does. To manage each risk, select mitigation
actions to reduce either the probability or the
impact. You might also identify contingency plans
that will kick in if your risk control activities aren’t
as effective as you hope.

A simple risk list doesn’t replace a plan for how
you will identify, prioritize, control and track risks.
Incorporate risk tracking into your routine project
status tracking4.

Plan time for process improvement.

Your team members are already swamped with
their current project assignments. If you want
the group to rise to a higher plane of software
development capability, though, you’ll have to
invest in process improvement. This means you’ll
need to set aside some time from your project
schedule for improvement activities. Don’t
allocate 100 percent of your team’s available time
to project tasks and then wonder why they don’t
make any progress on the improvement initiative.

Some process changes can begin to pay off
immediately, but you won’t reap the full benefit
from other improvements until the next project.
Process improvement is a strategic investment
in the organization. Process improvement is like
highway construction: It slows everyone down a
little bit for a time, but after the work is done, the
road is a lot smoother and the throughput
is greater.

Respect the learning curve.

The time and money you spend on training,
self-study, consultants and developing improved
processes are part of the investment your
organization makes in sustained project success.
Recognize that you’ll pay a price in terms of a
short-term productivity loss—the learning curve—

10

11

12

Process improvement is like highway
construction: It slows everyone down
a little bit for a time, but after the work
is done, the road is a lot smoother
and the throughput is greater.

13

6Karl Wiegers
“Project Management Best Practices” www.jamasoftware.com | 1.800.679.3058

can handle three or four such tasks. There’s just
too much friction associated with multitasking.

Some people multitask more efficiently than others,
even thriving on it. But if certain of your team
members thrash when working on too many tasks
at once, set clear priorities and help them do well
by focusing on just one or two objectives at a time.

Build training time into
the schedule.

Estimate how much time your team members
spend on training activities each year and subtract
that from the time available for them to work on
project tasks. You probably already subtract out
average values for vacation time, sick time and
other assignments; treat training time the
same way.

Recognize that the high-tech field of software
development demands that all practitioners devote
time to ongoing education, both on their own time
and on the company’s time. Arrange just-in-time
training when you can schedule it, as the half-
life of new technical knowledge is short unless
the student puts the knowledge to use promptly.
Attending a training seminar can be a team-
building experience, as project team members and
other stakeholders hear the same story about how
to apply improved practices to their
common challenges.

Record estimates and how you
derived them.

When you prepare estimates for your work,
write down those estimates and document how
you arrived at each of them. Understanding the
assumptions and approaches used to create an
estimate will make them easier to defend and
adjust when necessary. It will also help you
improve your estimation process. Train the team
in estimation methods, rather than assuming that
every software developer and project leader is
naturally skilled at predicting the future. Develop
estimation procedures and checklists that people
throughout your organization can use.

The Wideband Delphi method is an effective
group estimation technique. This technique asks
a small team of experts to anonymously generate
individual estimates from a problem description

14

15

and reach consensus on a final set of estimates
through iteration. Participation by multiple
estimators and the use of anonymous estimates to
prevent one participant from biasing another make
the Wideband Delphi method more reliable than
simply asking a single individual for his best guess5.

Use estimation tools.

Many commercial tools are available to help
project managers estimate entire projects. Based
on equations derived from large databases of
actual project experience, these tools can give
you a spectrum of possible schedule and staff
allocation options. They’ll also help you avoid the
“impossible region,” combinations of product size,
effort and schedule where no known project has
been successful. The tools incorporate a number
of “cost drivers” you can adjust to make the tool
more accurately model your project, based on the
technologies used, the team’s experience and other
factors. You can compare the estimates from the
tools with the bottom-up estimates generated from
a work breakdown structure. Reconcile any major
disconnects so you can generate the most realistic
overall estimate.

Plan contingency buffers.

Projects never go precisely as planned. The
prudent project manager incorporates budget
and schedule contingency buffers at the end of
phases, dependent task sequences or iterations to
accommodate the unforeseen. Use your project
risk analysis to estimate the possible schedule
impact if several of the risks materialize, then build
that projected risk exposure into your schedule as
a contingency buffer. An even more sophisticated
approach is critical chain analysis, a technique that
pools the uncertainties in estimates and risks into

16

If a manager elects to discard
contingency buffers, he has tacitly
absorbed all the risks that fed into the
buffer and assumed that all estimates
are perfect, no scope growth will
occur and no unexpected events will
take place.

17

7Karl Wiegers
“Project Management Best Practices” www.jamasoftware.com | 1.800.679.3058

done or not done—nothing in between. Project
status tracking is then based on the fraction of the
tasks that are completed and their size, not the
percentage completion of each task. If someone
asks you whether a specific task is complete and
your reply is, “It’s all done except…,” then it’s
not done! Don’t let people “round up” their task
completion status. Instead, use explicit criteria to
determine whether an activity truly is completed.

Track project status openly
and honestly.

An old riddle asks, “How does a software project
become six months late?” The rueful answer is,
“One day at a time.” The painful problems arise
when the project manager doesn’t know just how
far behind (or, occasionally, ahead) of plan the
project really is. Surprise, surprise, surprise.

If you’re the PM, create a climate in which
team members feel it is safe for them to report
project status accurately. Run the project from a
foundation of accurate, data-based facts, rather
than from the misleading optimism that can arise
from the fear of reporting bad news. Use project
status information and metrics data to take
corrective actions when necessary and to celebrate
when you can. You can only manage a project
effectively when you really know what’s done and
what isn’t, what tasks are falling behind their
estimates and why and what problems, issues and
risks remain to be tackled.

The five major areas of software measurement
are size, effort, time, quality and status. It’s a
good idea to define a few metrics in each of these
categories. Instilling a measurement culture into
an organization is not trivial. Some people resent
having to collect data about the work they do,
often because they’re afraid of how managers
might use the measurements. The cardinal rule of
software metrics is that management must never
use the data collected to either reward or punish
the individuals who did the work. The first time
you do this will be the last time you can count on
getting accurate data from the team members.

a rational overall contingency buffer6.
Your manager or customer might view these
contingency buffers as padding, rather than as the
sensible acknowledgment of reality that they are.
To help persuade skeptics, point to unpleasant
surprises on previous projects as a rationale for
your foresight. If a manager elects to discard
contingency buffers, he has tacitly absorbed all the
risks that fed into the buffer and assumed that all
estimates are perfect, no scope growth will occur
and no unexpected events will take place.
Sound realistic to you? Of course not. Better to
deal with reality—however unattractive—than to
live in Fantasyland.

TRACKING YOUR
PROGRESS

 Record actuals and estimates.

Unless you record the actual effort or time spent
on each project task and compare them to the
estimates, your estimates will forever remain
guesses. If you write down what actually happened
today, that becomes historical data tomorrow.
It’s really not more complicated than that. Each
individual can begin recording estimates and
actuals, and the project manager should track
these important data items on a project task or
milestone basis. In addition to effort and schedule,
you could estimate and track the size of the
product, in terms of requirements, user stories,
lines of code, function points, GUI screens or other
units that make sense for your project.

Count tasks as complete only when
they’re 100 percent complete.

We give ourselves a lot of partial credit for tasks
we’ve begun but not yet fully completed: “I thought
about the algorithm for that module in the shower
this morning and the algorithm is the hard part, so
I’m probably about 60 percent done.” It’s difficult
to accurately assess what fraction of a sizable task
has actually been finished at a given moment.

One benefit of using inch-pebbles (see Practice
#6) for task planning is that you can break a
large activity into a number of small tasks (inch-
pebbles) and classify each small task as either

18

19

An old riddle asks, “How does a
software project become six months
late?” The rueful answer is, “One day
at a time.”

20

8Karl Wiegers
“Project Management Best Practices” www.jamasoftware.com | 1.800.679.3058

LEARNING FOR THE FUTURE

Conduct project retrospectives.

Retrospectives (also called postmortems and post-
project reviews) provide an opportunity for the
team to reflect on how the last project, phase or
iteration went and to capture lessons learned that
will help enhance your future performance. During
such a review, identify the things that went well,
so you can create an environment that enables you
to repeat those success contributors. Also look for
things that didn’t go so well, so you can change
your approaches and prevent those problems
in the future. In addition, think of events that
surprised you. These might be risk factors to look

for on the next project. Finally, ask yourself what
you still don’t understand about the project, so you
can try to learn how to execute future work better.

It’s important to conduct retrospectives in a
constructive and honest atmosphere. Don’t make
them an opportunity to assign blame for previous
problems7. It’s a good idea to capture the lessons
learned from each retrospective exploration and
share them with the entire team and organization.
This is a way to help all team members, present
and future, benefit from your experience.

21

References

1. Chapter 4 of Practical Project Initiation presents a tutorial on defining project success criteria.

2. Wiegers explains this idea more fully in his book Creating a Software Engineering Culture (Dorset
House, 1996).

3. See Chapter 5 of Practical Project Initiation for more about defining product release criteria.

4. See Chapter 6 of Practical Project Initiation for an overview of software risk management.

5. Chapter 11 of Practical Project Initiation presents a tutorial on the Wideband Delphi
estimation method.

6. Chapter 10 of Practical Project Initiation is all about contingency buffers.

7. Chapter 15 of Practical Project Initiation describes the project retrospective process and provides a
worksheet to help you plan your next retrospective.

The 21 project management best practices won’t guarantee your project a great outcome. They will,
however, help you get a solid handle on your project and ensure that you’re doing all you can to make it
succeed in an unpredictable world.

9Karl Wiegers
“Project Management Best Practices” www.jamasoftware.com | 1.800.679.3058

Karl has provided training and consulting services worldwide on many aspects of
software development, management and process improvement. He has authored
5 technical books, including Software Requirements, and written more than 175
articles. Prior to starting Process Impact in 1997, he spent 18 years at Eastman Kodak
Company. His responsibilities there included experience as a photographic research
scientist, software applications developer, software manager, and software process
and quality improvement leader. Karl has led process improvement activities in
small application development groups, Kodak’s Internet development group, and
a division of 500 software engineers developing embedded and host-based digital
imaging software products. http://www.processimpact.com.

ABOUT JAMA SOFTWARE

ABOUT KARL WIEGERS

From concept to launch, the Jama product delivery platform helps companies
bring complex products to market. By involving every person invested in the
organization’s success, the Jama platform provides a structured collaboration
environment, empowering everyone with instant and comprehensive insight into
what they are building and why. Visionary organizations worldwide, including
SpaceX, The Department of Defense, VW, Time Warner, GE, United Healthcare
and Amazon.com use Jama to accelerate their R&D returns, out-innovate their
competition and deliver business value. Jama is one of the fastest-growing
enterprise software companies in the United States, having exceeded 100%
growth in each of the past four years, during which time both Inc. and Forbes
have repeatedly recognized the company as a model of responsible growth and
innovation. For more information please visit http://www.jamasoftware.com.

